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transduced and transported in biological systems? In the same year a Soviet 
solid-state physicist proposed a dynamic answer that was totally novel to the 
world of biology. Exploiting the regularity in the structure of a-helica^proteins, 
he showed that simplified models of these proteins could self-focus, or trap, 
energy in stable, pulse-like waves know as solitons. If self-focusing is indeed a 
biological reality, it may account for many aspects of protein behavior, 
including the efficient transport of energy. This possibility is being studied at 
Los Alamos through analytical, numerical, and experimental techniques. 



It is widely accepted that proteins are the principal workhorses of 
the cell. They are the major organizers and manipulators of biological 
energy and the enzymes that catalyze and maintain the life process. 
They are responsible for the active transport of ions into and out of 
the cell and for cellular and intracellular movement. Of course other 
macromolecules, such as DNA, polysaccharides, and lipids, have an 
energetic dimension, but their operation is always closely tied to that 
of proteins. Therefore the discipline of bioenergetics, which is the 
study of how cells generate and transfer their energy supply, is 
primarily the investigation of how proteins work. From decades of 
chemical analysis and x-ray crystallography and from more recent 
advances in spectroscopy, we know the composition and three- 
dimensional conformation of about two hundred proteins. Despite 
this extensive structural knowledge, however, there is no generally 
accepted model of how proteins operate dynamically. Presently, it is 
fair to say that the "nuts and bolts" functioning of proteins remains 
an outstanding question in bioenergetics. 

The energy supply for most protein activities is provided by the 
hydrolysis of ATP (adenosine triphosphate). An ATP molecule binds 
to a specific site on the protein, reacts with water, and under normal 
physiological conditions releases 0.49 electron volt (eV) of free 
energy. This is about twenty times greater than the average energy 
available from the thermal background at 300 kelvins. The question 
for bioenergetics is what happens to this energy? How does it perform 
useful work? Is the energy used through a nonequilibrium process, or 
does the energy first thermalize and then work through an equilibrium 
process? Molecular dynamics calculations, based on ball-and-spring 
models of proteins, show that heat from a thermal bath induces a 
variety of motions in proteins. These equilibrium calculations show 
motions ranging from localized, high-frequency vibrations of individ- 
ual bonds to collective, low-frequency motions of the entire protein. 
One may question, however, whether such equilibrium dynamics 
could account for the efficient transport and use of energy over the 
characteristic lengths of proteins, which range from tens to hundreds 
of angstroms. 

An alternative hypothesis is that the energy of ATP hydrolysis is 
converted through resonant coupling to a particular vibrational 
excitation within the protein. This coupling might proceed through an 
intermediate vibrational excitation of water. Figure 1 shows a likely 
recipient in such a resonant exchange, the amide-I vibration. This 
vibration is primarily a stretching and contraction of the carbon- 
oxygen double bonds in the peptide groups of the protein (see "The 
Structure of Proteins"). The energy of the amide-I vibration is about 
0.21 eV, which corresponds to about 1660 reciprocal centimeters 
(cml).* This energy is a little less than half the energy of ATP 
hydrolysis and is almost equal to the energy of the H-O-H bending 
mode of water at about 1646 c m l .  The amide-I vibration is a 
prominent feature in the infrared absorption and Raman spectra of 

Vibration 

Fig. I. Peptide group showing amide-I resonance. The amide-I 
resonance, which is intrinsic to every peptide bond of every 
protein, is one of the strongest and most characteristic spectral 
features of a protein. Its energy is nearly invariant /ram one 
protein conformation to another (1645 to 1660 cm-I for an a 
helix, 1665 to 1680 cm-I for a sheet, and 1660 to 1665 cm-I 
for a random coil). The major contribution to the amide-I 
resonance comes from the stretching vibration of the CEO 
bond, although relatively small contributions come from both 
the C-N in-plane stretching and N-H in-plane bending vibra- 
tions. 

proteins. Moreover, its energy remains almost constant from one 
protein conformation to another, indicating that it is rather isolated 
from other degrees of freedom. All these factors lead to the conjecture 
that the energy released by ATP hydrolysis might stay localized and 
stored in the amide-I vibration. 

When a similar idea was discussed at the 1973 meeting of the New 
York Academy of Sciences, the objection was raised that the lifetimes 
of typical vibrational excitations in complex biological molecules are 
too short (1012 second) for them to be important in the storage and 
transfer of biological energy. In particular, peptide groups have large 
electric dipole moments; therefore, dipole-dipole interactions among 
peptide groups would cause the amide-I vibrational energy to spread 
to neighboring peptide groups. Thus the energy would not remain 
localized but instead would disperse throughout the protein and be 
lost as a source for biological processes. 

The Soviet physicist A. S. Davydov countered this objection with 
an argument from nonlinear physics. He suggested that the energy of 
ATP hydrolysis can be stored in the amide-I vibration through a 
nonlinear interaction that self-focuses, or traps, the energy in a soliton 

- 

*In spectroscopy one often uses the wave number I /% = o)/2nc = E/hc, instead 
of the energy E or frequency to, to characterize vibrational states since the 
typical numbers are more palatable. 
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H O - C - C - N - H  R = Side Chain 
on Alpha Carbon 

Amino acids polymerize to form long chains of residues that liberate one molecule of water and form a peptide bond as shown 
tein. When two amino acids join togeth below. Thus the protein is a long polypeptide chain. 
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three-dimensional conformations. Among the possible conform protein. In the globular conformation, which is the most complex, the 
usually only one exhibits biological activity. This "native" chain is irregularly and tightly folded into a compact, nearly spherical 
tion generally minimizes the free energy of the protein and shape. Short stretches of the chain are often constructed from a 
the most stable. Many factors contribute to this stability including 
hydrogen bonding, disuiftde bonding, Van der Waals forces, and 
solvent interactions. 

Three eommon structural motifs recur over and over again in 
proteins: the a helix, the 6 sheet, and the giobular conformation. In 
the a helix the chain is tightly coiled about its longrtudinal axis. In the 
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helices or @ sheets. 
Many large proteins consist of smaller protein subunits that 

interlock into one macromolecule. Such complex structures operate 
as coordinated factories in which each subunit contributes a special- 
ized function to the macromolecular protein. < 

Energy Minimization 
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(see "What Is a Soliton?"). The soliton results from a nonlinear 
coupling between the vibrational excitation and a deformation in the 
protein structure caused by the presence of the excitation. The 
excitation and the deformation balance each other, and the resulting 
excitation moves through the protein uninhibited, much the way 
electrons move in the superconducting state of a metal. 

Davydov worked out these ideas for one particular protein con- 
formation, the a helix pictured at the beginning of this article. He 
introduced a simple mathematical model to show how solitons could 
travel along the three spines, or hydrogen-bonded chains, of the 
protein. 

Davydov first applied this idea to the problem of muscle contrac- 
tion. He proposed that myosin, a major contractile protein in striated 
muscle that has an a-helical tail approximately 1500 angstroms long, 
propagates a soliton that squeezes and pulls on the actin filaments 
around it. This action serves to slide the actin and myosin filaments 
together and thereby results in muscle contraction. In addition, 
Davydov and his coworkers have considered the idea that a-helical 
proteins may facilitate electron transport through a soliton mecha- 
nism. In this case an extra electron causes a lattice distortion in the 
protein that stabilizes the electron's motion. Thus it may be reason- 
able to consider charge transfer across membranes, energy coupling 
across membranes, and energy transport along filamentous 
cytoskeletal proteins in terms of a soliton mechanism, since the 
proteins that carry out these functions contain structural units with 
significant a-helical character. 

The soliton model is one of several concepts for protein dynamics 
that should attract the careful attention of biologists. Clearly, it 
cannot explain every aspect of protein dynamics, but it is motivating 
exciting questions and new experiments. In the following sections we 
will describe Davydov's concept in the context of the a helix and 
expand it to a crystalline polymer called acetanilide, which was 
observed by G. Careri to have an anomalous spectral line near the 
amide-I band that might be due to a soliton. We will discuss 
experimental techniques for verifying the existence of solitons in a- 
helical proteins and acetanilide and consider the concept of self- 
focusing in globular proteins. (A further application of the soliton 
model is discussed in "A Possible Mechanism for General 
Anesthesia.") 

Before discussing details of the soliton model, we will try to make 
the relevant biological context more vivid to the reader by presenting 
three specific examples where soliton-like dynamics may well be 
operating. - 

Three Sites of Action at a Distance 

Alpha-helical structure is quite common in proteins, and in 
particular it is present where energy appears to be transported from 

one end of a protein to the other or where two processes appear to be 
coupled by a protein. 

Mitochondria. Mitochondria are the energy-generating stations for 
living cells. These organelles, which may have evolved from separate 
organisms that were later incorporated into the cell, occupy approx- 
imately 20 percent of the total cellular volume. Within these or- 
ganelles has developed a very specialized protein unit specifically 
designed to synthesize ATP. It is called the tripartite repeating unit 
(Fig. 2). Numerous copies of this unit make up the flexible inner 
membrane of a mitochondrion. As shown in Fig. 2, each time three 
ATP molecules are synthesized in the head of the Fo-F, protein, a 
pair of electrons (which are donated by the Krebs cycle via the 
intermediate NADH) circulates among the membrane-bound elec- 
tron-transport proteins (labeled I, 11, 111, and IV). The electrons 
ultimately combine with oxygen and protons to produce water. The 
movement of these electrons back and forth across the inner mem- 
brane, in turn, creates a proton gradient across the membrane that 
drives the synthesis of ATP in the head of the Fo-F, protein. At 
present, the nature of the driving mechanism is an open question. 
How do the cytochrome proteins in subunits I, 11,111, and IV facilitate 
electron and proton transport across the thickness (about 60 
angstroms) of the inner mitochondria1 membrane and at the same 
time couple ion transport to ATP synthesis? (Semiclassical theories 
account for electron tunneling between the donor and acceptor heme 
groups that are attached to the cytochrome proteins and have thus 
explained oxidation-reduction rates in cytochromes. These theories, 
however, have not connected electron tunneling to ATP synthesis.) 

The dominant configuration of the cytochromes is a-helical, and 
these proteins span the inner membrane. Given these facts we may 
ask whether a soliton-like mechanism in these proteins may have 
anything to do with the stabilization of electron transport and its 
connection to ATP synthesis. 

A related question concerns the contracted configuration of a 
mitochondrion during ATP synthesis. When a mitochondrion is 
inactive, its inner membrane is relaxed and spread out, but when 
active, its inner membrane abruptly contracts into a more wrinkled 
and twisted appearance (Fig. 3). This brings the myriad tripartite 
repeating units in the inner membrane into closer apposition with one 
another. Apparently this aggregation of transmembrane proteins is a 
prerequisite for ATP synthesis. Whether or not this aggregation 
induces a change in the conformation of the individual transmem- 
brane proteins is not clear. However, if a soliton-like mechanism were 
operating during ATP synthesis, it could well be affected by such 
changes in protein conformation. 

Cytoskeleton. The cytoskeleton is a framework of interconnected 
proteins that literally fills and bridges the inside of a cell (Fig. 4). It 
provides an internal structure on which the "bag" of the cell rests 



Solitons in Biology 

Fig. 2. Cross section of the mitochondrial membrane showing 
ATP synthesis (red) and electron transport (blue). These two 
processes both take place in the tripartite repeating units of the 
flexible inner membrane, and they appear to be coupled. For 
every three ATP molecules synthesized in the head of the 
mushroom-shaped central protein Po-F',, a pair of electrons 
circulates through three of the four membrane-bound protein 

subunits ft, lit, undTV) ardcombines with oxygen andprotons 
to form water. The electron pair is donated by the Krebs cycle 
through the intermediate NADH. A proton gradient across the 
inner mitochondrial membrane couples ATP synthesis to the 
electron transport, or respiratory, chain, but it is not clear how 
electron transport is related to proton pumping. 
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Fig. 4. Immunofluorescence micrograph showing a portion of 
the cytoskeleton from a cultured rat-embryo cell at a mag@- 
cation of 10,000. The micrograph was prepared with anti- 
tropomyosin. The geodesic network of bundles visible in the 
micrograph forms around the cell's nucleus as the cell changes 
from a motile to a spread-out, immotile state. (Micrograph 
courtesy of E. Lazarides.) 
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Fig. 5. Glycoproteins (red) embedded in a cell membrane 
physically connect the inside and the outside of the cell. The 
polysaccharideportion of the glycoprotein is on the cell suIfdce, 
and the protein portion juts through the lipid bilayer to form the 
membrane channels. Some glycoproteins are closely associated 
with microfilaments and microtubules in the cytoskeleton. 

Glycoproteins. Glycoproteins are combinations of sugars and pro- 
teins that are covalently bonded together. In the lipid bilayer, or outer 
membrane, of a cell are numerous glycoproteins, which vary 
markedly in size and chemical composition (Fig. 5). Many of these 
macromolecules span the entire thickness of the lipid bilayer; that is, 
they physically connect the inside and the outside of the cell. As a 
glycoprotein floats in the lipid bilayer, its polysaccharide portion is in 
the aqueous phase surrounding the cell, while most of its protein 
portion is in the lipid phase of the membrane. These transmem- 
branous glycoproteins are crucial to the livelihood of the cell. They 
are implicated in cellular adhesion, cellular migration, cellular iden- 
tity, intercellular communication, and transmembrane signaling. They 
allow a ready pathway over which signals that originate on the 
cellular exterior (through the binding of a hormone, neurotransmitter, 
or immunoglobulin) are conveyed directly to the cellular interior. 

Much of the protein fraction of a glycoprotein is in the a-helical 
conformation. Thus information about events on the outside of a cell 
may be conveyed through a helical channel across the thickness of the 
lipid bilayer (about 60 angstroms). Therefore, nonlinear dynamics 
may again provide a key for understanding the mechanisms by which 
chemical "whispers" are detected and processed on the membrane 
surface. 

. 
pine 1 

Fig. 6. Portion of an a-helicalprotein showing the three spines 
of hydrogen-bondedpeptide groups. The dipole moment of each 
peptide group is approximately colinear with the adjacent 
hydrogen bond. 
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Solitons on the a Helix 

Alpha-helical proteins, which are implicated in so many ways in 
energy transport and energy coupling, are the context for Davydov's 
theory. As the name implies, the conformation of these proteins is a 
helix formed by the twisting of the protein backbone. In addition, 
hydrogen bonds link the peptide groups together to form three spines 
that span the length of the helix and stabilize it. (The reader might like 
to make a model of the protein backbone like the one pictured in the 
opening figure. To form the helix, wind the backbone into a right hand 
spiral and attach the hydrogen of the first peptide group to the oxygen 
of the fourth group, the hydrogen of the second peptide group to the 
oxygen of the fifth, and so on. Note the formation of three spines of 
hydrogen-bonded peptide groups. The first spine consists of the first, 
fourth, seventh, tenth, etc., peptide groups. The second and third 
spines form similarly.) The spines of an a-helical protein are not 
exactly linear or parallel to the axis of the helix (Fig. 6), but 
nevertheless the electric dipole moments d of the amide-I vibrations 
are essentially in the same direction as the hydrogen bonds that define 
the spine. This fact, as we will see, leads to cooperative behavior along 
each chain of hydrogen-bonded peptide groups. 

Consider a single linear chain of hydrogen-bonded peptide groups. 
Figure 7 shows three interactions that occur when an amide-I 
vibration in a particular peptide group is excited, say, by the 
hydrolysis of ATP. First (Fig. 7a), there will be resonant interactions 
with neighboring peptide groups due to electromagnetic dipole-dipole 
interactions, much like the interaction between transmitting and 
receiving antennae of a radio system. This interaction alone would 
lead to dispersion of amide-I energy. Second (Fig. 7b), due to changes 
in static forces (hydrogen bonds, Van der Waals forces, etc.), the 

Fig. 7. Linear chain of hydrogen-bonded peptide groups show- 
ing the three interactions that combine to trap amide-I vibra- 
tional energy in a stable solitary wave, or soliton. Peptide 
groups with electric dipole moments 3 are separated by a 
distance R  from each other. (a) The dipole-dipole interaction 
energy between neighbors on the chain is equal to 21 31 2 / ~ 3 .  (b) 
A peptide group of mass m displaced AR from its equilibrium 
position sets up a longitudinal sound wave along the chain. The 
wave travels at velocity v = ~(K/rn)* /~ ,  where K is the strength 
of the weak spring that represents the hydrogen bond between 
peptide groups. (c) The nonlinear interaction between amide-I 
vibrational energy and longitudinal sound is represented by a 
feedback loop in which one interaction reacts back on the other 
and vice versa. The strength of the interaction is proportional to 
y2 and inversely proportional to K. 

is) 
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Fig. 8. Two types of solitons can form on the a helix: (1) a 
symmetn'c soliton in which amide-I vibrational energy is shared 
equally among the three spines, and (2) an antisymmetric 
soliton in which amide-I energy is shared unequally. The 
soliton is localized over about four turns of the helix. The 
symmetric soliton causes compression in the longitudinal direc- 
(ton, and the antisymmetric soliton causes bending o f  the helix. 

excited peptide group will tend to move from its equilibrium position, 
causing a local deformation of the hydrogen bond in the region of 
excitation. In a-helical proteins the largest displacement will also be 
along the hydrogen bonds because hydrogen bonds are weaker than 
the covalent bonds along the helix. Since the hydrogen bond behaves 
like a weak spring, this movement of the peptide group away from 
equilibrium will set up a longitudinal sound wave, or phonon, along 
the chain as the peptide groups oscillate about their equilibrium 
positions. 

These two dynamical effects are displayed in Fig. 7 as if they were 
uncoupled; that is, dispersion of amide-I bond energy (Fig. 7a) is 
independent of the propagation of longitudinal sound waves (Fig. 7b). 
Davydov, however, pointed out that the two effects are coupled by a 
nonlinear interaction that arises from the change in amide-I vibra- 
tional energy E caused by a change in the distance R between peptide 

groups along the chain (hydrogen-bond stretching). The strength of 
this coupling is proportional to the nonlinear parameter 

which can be expressed in units of joules per meter, or newtons. The 
effect of this nonlinear coupling i s  displayed graphically in Fig. 7c. 
Localized amide-I vibrational energy acts (through x) as a source of 
longitudinal sound, and this longitudinal sound reacts (again through 
v )  as a potential well that traps the amide-I vibrational energy and 
prevents its dispersion. Coupled together, the localized amide-I 
vibrational energy and the longitudinal deformation can travel along 
the chain as a soliton with no energy loss. 

As shown in the next section, this soliton is described by the 
nonlinear Schrodinger equation. Figure 7c shows that the strength of 
the nonlinear effect is proportional to x2. It is also inversely propor- 
tional to K, the spring constant of the hydrogen bonds connecting the 
peptide groups. If the linear chain were absolutely rigid, K would 
equal infinity, there would be no nonlinear interaction, and the amide- 
I energy would disperse. 

In a-helical proteins the three spines are coupled to each other by 
additional transverse dipole-dipole interactions. This situation can be 
described by three coupled nonlinear Schrodinger equations. The 
solutions to these equations yield two types of solitons, a symmetric 
one in which the energy of the amide-I excitation is shared equally by 
all three chains and an antisymmetric one in which the amide-I energy 
and the accompanying deformation are shared unequally and the 
molecule bends (Fig. 8). The antisymmetric soliton is lower in energy 
and is therefore more likely to occur. 

This collective excitation is called a soliton because it behaves in 
many ways like a particle. For example, its energy is the sum of its 
internal energy plus its kinetic energy, 112 MeK v2, where Men. is the 
effective mass of the soliton and v is the velocity with which the 
excitation and accompanying distortion travel down the length of the 
helix. This velocity is less than the velocity of longitudinal sound in 
the molecule. The soliton travels with little or no energy loss and is 
therefore a very efficient means of energy transport along the length 
of the helix. Moreover, as will be shown in the mathematical 
development below, the soliton has an energy less than the energy of 
the amide-I vibration alone. It is therefore energetically favorable for 
solitons to form from amide-I excitations. 

The mathematical model first developed by Davydov is a semi- 
classical approximation in which the amide-I excitations are treated 
quantum mechanically, and the displacements of the peptide groups, 
or longitudinal sound wave, along the hydrogen-bonded chain are 
treated classically. We will present the Davydov model for collective 
excitations along a single chain of hydrogen-bonded peptide groups 
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and show how the continuum approximation of this model leads to 
the nonlinear Schrodinger equation and its well-known soliton solu- 
tions. (The reader unfamiliar with the formalism of quantum 
mechanics may skip the next section without losing the main points of 
the article.) 

The Davydov Model: How It Yields Soliton Solutions 

The energy operator H, or Hamiltonian, for the collective excita- 
tion along the chain is a sum of three operators: H = + Hphonon 
+ Hinteraction, where Hamide-i is the operator for the amide-I vibrational 
excitations, Hphonon is the operator for the displacements of the 
peptide groups, and Hinteraction is the operator for the interaction 
between the amide-I excitations and the displacements. 

If E is the amide-I excitation energy and Bi is an operator for 
creation of this excitation on the nth peptide group, then Hamide-i is 
given by 

where the summation is carried out over all N peptide groups. The 
first term, E B P ,  defines the amide-I excitation energy, and the 
second term describes the resonance dipole interaction between 
nearest neighbors. The operators B k _ ,  and B\B~+] represent 
transfer of amide-I energy from peptide group n to nÂ± due to the 
dipole-dipole interaction. The dipole-dipole interaction energy J is 
given by 21 dl 2/R3, which is the usual electrostatic energy associated 
with two colinear dipoles of moment d separated by the distance R. 

The energy Hphonon associated with displacing the peptide groups 
away from their equilibrium positions is given in the harmonic 
approximation by 

where un is the displacement of the nth peptide group, m is the mass of 
the peptide group, and K is the spring constant, or elasticity 
coefficient, of the hydrogen bonds forming the linear chain. The first 
term is kinetic energy and the second potential energy. 

The Hamiltonian for the interaction between the amide-I excitation 
and the displacements of the peptide groups takes the form 

where the coupling constant x, as mentioned earlier, represents the 
change in amide-I energy per unit extension of an adjacent hydrogen 
bond. 

The total Hamiltonian H = + Hphonon + Hinteraction of the 
system must satisfy the Schrodinger equation: 

The wavefunction 1 y), which defines the state of the system, is 
expressed by 

and satisfies the normalization condition 

<vI V> = S 1 an(Ãˆ ' 

The quantity 1 an(t)\2 is the probability of finding the excitation on the 
nth peptide group at time t. The state 10) represents an unexcited 
amide-I vibration, that is, the ground state of the system. 

Substituting Eq. 5 in Eq. 4 we get, after some algebra, the following 
set of differential equations: 

and 

Equations 7 and 8 are the main result of Davydov's original model. 
They describe the time evolution of amide-I vibrational energy 
coupled to displacements of the hydrogen-bonded chain of peptide 
groups. The quantity 1 a_(#)[ characterizes the distribution of the 
amide-I energy over the individual peptide groups of the chain. 

In order to demonstrate that an(t), the probability amplitude of the 
excitation, does behave like a soliton, we will restrict ourselves to 
solutions of Eqs. 7 and 8 that vary slowly as a function of the peptide 
group number n. In this limit we can replace the functions a ( t )  and 
un(t) with continuous functions a(x,t) and u(x,t), thus approximating 
n with the dimensionless coordinate x. Equations 7 and 8 then 
become 
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and 

where 

62-69). It is sufficient for our purpose here to look only at a stationary 
solution, that is, one for which s = 0. In this case a solution of Eq. 13 is 
given by 

The constant x0 is the position of maximum probability of arnide-I 
excitation along the chain, and the pulse-shaped form given by Eq. 14 
falls off rapidly when one moves away from xo (see "What Is a 
Soliton?"). Equation 14 also satisfies the continuous equivalent of Eq. 
6: 

The left side of Eq. 10 is essentially a wave equation for longitudinal indicating that one quantum of amide-I energy is excited on the 
sound in the system of coupled peptide groups; the sound velocity v is peptide chain. 

given by v = R(K/~z)~ '~ .  The right side acts as a source term for The energy Esol associated with the soliton is given by 

generation of sound. 
We shall seek traveling wave solutions of Eqs. 9 and 10 in the form 

of excitations that propagate along the chain with a velocity v; 
that is, 

u(x,t) = u(x - vt) . 

Inserting Eq. 1 1 in Eq. 10, we get 

where s is the ratio of the propagation velocity to the velocity of 
sound: s = v / v  < 1. 

Substituting Eq. 12 into Eq. 9, we get 

where K = 4x2/K(l - s2). 
Equation 13 is the nonlinear Schrodinger equation, which has 

soliton solutions. For its general solution we refer the interested 
reader to "Exact Theory of Two-Dimensional Self-Focusing and 
One-Dimensional Self-Modulation of Waves in Nonlinear Media" by 
V. E. Zakharov and A. B. Shabat (Soviet Physics JETP 34(1972): 

Inserting the solution given by Eq. 14, we get 

This is the energy of a stationary soliton. A similar but more 
complicated expression can be obtained for moving solitons. 

It is instructive to see what happens in an absolutely rigid chain of 
peptide groups. In such a case K = m, and the multiplicative 
constant K in the nonlinear term of Eq. 13 is equal to zero. Equation 
13 is then a linear Schrodinger equation, which has solutions in the 
form of plane waves. This means that an excitation is uniformly 
distributed along the whole chain. In other words, the amide-I energy 
has dispersed and is no longer localized. It can also be seen from Eq. 
16 that the energy of such an extended excitation (or exciton) equals 
E - 2J, which is larger by an amount x4/3KV than the energy EWl of 
the spatially localized soliton excitation. It is thus more favorable for 
the system to localize its energy when the nonlinear coupling between 
amide-I energy and displacement of the associated peptide group is 
taken into account. 
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Threshold Conditions for Soliton Formation 

Although the Davydov model leads to the nonlinear Schrodinger 
equation and soliton solutions, one can, with some justification, ask 
whether the nonlinear Schrodinger equation has anything to do with 
energy transport in a real biological system. We certainly do not 
expect that the smooth mathematical properties of the soliton will 
carry over unaltered to a real system. We do suggest, however, that 
the nonlinear interactions between arnide-I excitations and lattice 
distortions will lead to stable pulse-like excitations of focused energy. 
Without being too dogmatic, we often find it helpful to refer to such 
excitations as solitons, and it is in this sense that the nonlinear 
Schrodinger equation serves as a useful tool in the analysis. 

The strength of the coupling between amide-I vibration and lattice 
distortion depends on the nonlinear parameter x. The value of this 
coupling constant is therefore very important when Davydov's theory 
is applied to real systems. In 1979 J. M, Hyman, D. W. McLaughlin, 
and A. C. Scott started a numerical investigation of the Davydov 
model applied to an a-helical protein. The equations describing this 
system consist of three sets of equations like Eqs. 7 and 8 but with 
additional terms to account for transverse dipole-dipole coupling 
between the three hydrogen-bonded chains of the a helix. Numerical 
solution of these equations yielded an important result: The coupling 
between amide-I vibration and lattice distortion must be sufficiently 
strong for self-focusing to takeplace. Below a certain threshold value 
a soliton cannot form and the dynamics is essentially linear. The 
result of a subsequent detailed investigation is summarized in Fig. 9, 
which shows the distribution of amide-I energy along the helix for 
different values of x. For x >: 0.45 x 10'' newton, a soliton-like 
object is seen to form. 

About the same time that this numerical work was being conducted 
at Los Alamos, an independent research effort was taking place at the 

Institute of Theoretical Physics in Kiev. To estimate y from first prin- 
ciples, V. A. Kuprievich and 2. G. Kudritskaya were doing ab initio 
quantum-chemical calculations on the electronic structure of a dimer 
of formamide. This molecule consists of two peptide groups con- 
nected by a hydrogen bond and therefore serves as a tractable model 
for more complex protein structures. Since y is related to the change 
in the C=O spring constant (K) per unit change of the hydrogen-bond 
length, estimates of x can be obtained from two values of K 
corresponding to two hydrogen-bond lengths. Kuprievich and Kudrit- 
skaya thus estimated x to lie between 0.3 x lo-'' and 0.5 x 10"'' new- 
ton. Careri has made an empirical estimate of y from a comparison of 
amide-I energies and hydrogen-bond lengths for various polypeptide 
crystals. He found x to be about 0.62 x l o1 '  newton. These estimates 
for y indicate that the level of nonlinearity in real systems is sufficient 
to allow self-focusing (soliton-like) excitations to form. 

Low-Energy Spectrum of Solitons on the a Helix 

Numerical studies of Davydov's model for the helix show that the 
collective excitations behave very much like the solitons of the 
nonlinear Schrodinger equation. For example, they are remarkably 
stable upon collision. This property is illustrated in Fig. 10, which 
shows the total amide-I energy (the sum over all three chains of the 
helix) as a function of time and peptide group number. Two solitons 
are launched, one from each end of the helix, by exciting two peptide 
groups on opposite ends of one of the three chains. The two solitons 
propagate in opposite directions at approximately three-eighths of the 
sound speed, or 17 angstroms per picosecond. They collide but pass 
through each other and retain their identities after the collision. 

There is an internal dynamics associated with the soliton propaga- 
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Fig. 10. Numerical calculation showing the particle-like solitons, propagating at three-eighths of the sound speed (1 7 
behavior of solitons under collision. The total amide-I energy is angstroms per picosecond), pass through each other and 
plotted as a function of peptide group number and time. The maintain their identities. 

Fig. 11. Amide-I energy of spine 1 of the a helix as a function of higher on the other two. The interspine oscillation of energy is 
time for a propagating soliton launched from the right end of caused by transverse dipole-dipole interactions among spines. 
the helix. When the energy is low on the spine shown, it is 

tion that cannot be appreciated from Fig. 10, namely the oscillation of by transverse dipole-dipole interactions between peptide groups on 
soliton energy among the three spines as the soliton propagates down different spines, has a period of about 2 picoseconds. In Fig. 1 1 we 
the length of the helix. This interspine oscillation, which is mediated show this phenomenon by depicting the amide-I energy resident on 
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only one spine. When the energy is low on the spine shown, it is higher 
on the other two. 

The internal frequencies associated with the dynamics of a propa- 
gating soliton are in a range where many proteins are known to exhib- 
it rich dynamic behavior. The "flutter" associated with the movement 
of the soliton past the periodic structure of unit eells has a spectral 
frequency of approximately 125 c m l ,  and the interspine oscillation 
has a frequency of approximately 20 c m l ,  It is therefore of interest to 
understand what the Davydov model for an a helix predicts in terms 
of the low-frequency spectrum. For this purpose we calculated the 
"total" bending on one spine as a function of time. The bending is 
defined as uG, - uaiy, where a is the index of one of the three spines, 
and 1 and N are the -hers of the first and last groups in the chain. 
This quantity is shown in Fig. 12a as a function of time for two values 
of tile coupling constant x, one above threshold (A) and one below 
(B). The spectrum obtained as the square of the Fourier transform of 
this signal is shown in Fig. 12b. We have identified the interspine 
oscillation as line 1. Harmonies of this basic oscillation appear as 
lines 2,3,4, and 5. The "flutter" frequency is seen as line 7, and lines 
6,8, and 10 are interpreted as the convolution of lines 1,2, and 3 with 
line 7. The lines marked A and 3 are subharmonics of line 1 generated 
through the nonlinear interaction of amide-I energy with lattice 
distortion. This calculated spectrum shows features that correlate well 
with low-frequency (below 200 em1) spectra of metabolically active 
cells measured by laser Hainan spectroscopy. Even though the living 
system is immensely more complicated than what can possibly be 
described within the limitations of the Davydov model, the correlation 
is striking enough to warrant further study. 

Evidence for Solitons from a "Model Protein" 

The most convincing experimental evidence for the existence of 
solitons in proteins comes not from the spectra of proteins or living 
cells but from the spectrum of the crystalline polymer acetanilide 
((CH3CONHCgH,)), or ACN. ACN is organized into hydrogen- 
bonded chains (Fig. 13) that are held together transversely by Van der 
Waals forces. ACN was used as an analgesic in the nineteenth 
century (its modern chemical cousin is Tylenol), but its interest for 
our purposes is its remarkable similarity to the chain structure of 
hydrogen-bonded peptide groups in a-helical proteins (compare Figs. 
13 and 6). Late in the 1960s Careri noted that the peptide bond 
lengths and angles in ACN are very close to those in natural proteins, 
and he began an experimental program at the University of Rome to 
see whether ACN would show any unexpected physical properties 
that might be of biological interest. His intuition was rewarded in 
1973 by the observation of an anomalous line in the infrared 
absorption spectrum of ACN. This anomalous line is lower in wave 
number than the main amide-I peak by 15 c m l .  Its intensity is low at 

Fig. 12. (a) Time dependence of the bending of a single spine 
(ua1 - urn) caused by a propagating soliton for two values of 
x, one above the threshold for soliton formation (A) and one 
below the threshold (B). (b) The spectrum obtained as the 
square of the Fourier transform of curve A. See the text for an 
interpretation of this low-frequency spectrum. 

Spring 1984 LOS ALAMOS SCIENCE 



Solitons in Biology 

Fig. 13. A porribn of two unit cell? of crystalline acetanilide 
(ACN). The two hydrogen-bonded peptide chains resemble the 
spines of the a-helix shown in Fig. 6. 

room temperature but increases as the temperature is lowered (Fig. 
14). Numerous attempts by Careri and coworkers to find a conven- 
tional assignment for this new line were unsuccessful throughout the 
1970s. 

Then in 1982, when Scott became aware of Careri's data, he and 
Careri's group proposed that the anomalous line was due to a new 
type of soliton, one that results from the coupling of the arnide-I 
vibration to an out-of-plane displacement of the hydrogen-bonding 
proton rather than to an in-plane displacement of the whole amide 
group. The soliton arising from this coupling to the lesser mass of the 
proton can be excited directly by electromagnetic radiation, a 
necessary ingredient for explaining the ACN data. The types of 
solitons discussed by Davydov could not be excited directly by 
radiation because the heavy peptide groups move too slowly about 
their equilibrium positions. 

The mathematics of the modified theory is quite similar to the 
original Davydov model, and an expression similar to Eq. 16 can also 
be derived for the energy of this new type of soliton. Using the 
measured red shift of 15 c m l  in this expression, Scott obtained a 
value for the nonlinear coupling parameter that agrees reasonably 
well with the estimated values of the related parameter y. 

The high-resolution ACN data of E. Gratton in Fig. 14 show the 
temperature dependence of the amide-I band and the anomalous band 
at 1650 c m l .  The shoulders on the arnide-I band are due to the 
different normal modes of amide-I excitation in the complicated unit 
cell of ACN. This unit cell has eight distinguishable peptide groups. 
The splitting of the amide-I band can thus be explained by normal- 
mode analysis based on group theory. The appearance of the band at 
1650 c m l  is consistent with the modified Davydov model and 
therefore may be due to the presence of solitons. 

Laser Rarnan Spectroscopy. To further check this prediction we have 
repeated some of the spectroscopic measurements of Careri and 
coworkers and are now doing additional measurements on single 
crystals of ACN. (Figure 15 illustrates the principles of Raman 
scattering, and Fig. 16 shows the experimental setup.) Our intent is 
either to find alternative explanations for the 1650 c m l  band or to 
find positive evidence for assigning it to soliton excitations. 

We considered the possibility that the 1650 c m l  band is due to a 
second-order phase transition in the crystal at low temperature. If so, 
the intensity of the line as a function of temperature would exhibit a 
threshold near some critical temperature. The measured intensity, 
however, shows only the smooth, gradual dependence predicted by 
the soliton model. Further, a second-order phase transition is ex- 
pected to be accompanied by the appearance of "soft modes," which 
are evidenced by low-energy (less than 200 c m l )  lines whose 
frequencies vary quadratically with temperature. No such lines were 
observed at temperatures ranging from 300 down to 6 kelvins. 
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Fig. 14. Infrared spectra of ACN at dmrent temperatures 
showing the amide-I band at 1665 cm-I and the anomalous 

d at 1650 crn". The 1650 band may be caused by 
solitons. (Data courtesy of E. Gratton.) 

Fie, 15. Roman scattering allows one to use commonly avail- 
able visible lasers and quantum detectors to analyze states 
whose energies correspond to wavelengths in the infrared and 
far-infrared spectral regions. The energy level diagrams show 
two types of Raman scattering, Stokes scattering (a) and anti- 
Stokes scattering @). Both processes probe a particular excited 
state of the molecule at energy E = ha. In Stokes scattering a 
photon from the laser fleld at frequency (oo is "absorbed" by a 
molecule and excites it from the ground state to a "virtual 
state." The molecule then instantaneously decays to the state 
being studied (at energy level mJ and emits a photon of 
frequency as = m0 - o>,. (Note that we are using the terms 
"frequency" and "energy" almost synonymously since they 
differ only by the multipl1Cative constant h = h/2n.) One can 
think of the process as one in which the laserphoton scatters off 
the molecule, leaving the molecule in an excited state and losing 
an amount of energy precisely equal to the energy o f  that 
excited state. Consequently, from the measured wavelength of 
the scattered photon and the known wavelength of the incident 
laser photon, one can determine the energy haz of the state in 
question, without probing it with infiwedphotons of frequency 
a,. The intensity of the Stokes line at a, will be proportional to 
the population of the ground state. On the other hand, as shown 
in @), some molecules may already be in the excited state. A 
photon of frequency <o. may raise such a molecule to a deferent 
"virtua;" state from which it decays to the ground state, 
emitting a photon of higher frequency ma = mo + a. The 
intensity of the anti-Stokes line at m + m will be proportional 
to the population of the excited stale. - - - - - -  = - -  .a 
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fig. 16. (a) Experimental setup for a Roman-scattering experi- 
$merit. Linearly polarized laser light is focused on a sample. 
Some of the scattered light is collected, usually at 90Â to the 
incoming laser beam, by a lens or mirror. It may be passed 
:through a polarizing filter before entering the spectrometer, (b) 
A single crystal of ACNscattering laser light in a laser Roman 
exyeriment at Los Alamos. 

Finally, x-ray diffraction measurements of the crystal structure as a 
function of temperature show no evidence of structural changes. 

On the positive side, if the 1650 c m l  feature does correspond to a 
soliton, then it should mimic the behavior of the amide-I line as 
certain experimental parameters are varied. For example, the two 
lines should have the same polarization. That is, for any crystal 
orientation and polarization of the probing laser light, the Raman- 
scattered light corresponding to the line at 1650 c m l  should have the 
same polarization as that corresponding to the 1665 c m l  line. Our 
latest measurements (Fig. 17) show that indeed the two lines have the 
same polarization. 

Another positive test would be to substitute carbon-13 for 
carbon-12 in the carbon-oxygen double bond and measure the energy 
shift of both lines. Almost identical energy shifts for the 1650-cm-I 
line and the amide-I line would eliminate the possibility that the 1650- 
c m  line arises from some normal mode of the system other than the 
amide-I vibration. We are in the process of synthesizing an 
isotopically labeled ACN sample for this experiment. 

Davydov estimated the lifetime of the soliton by taking photon- 
phonon interactions into account in the Hamiltonian. The radiative 
lifetime of the soliton is expected to be much longer than that of an 
exciton, or normal vibrational mode. This conjecture may also be 
tested with Raman spectroscopy. 

To understand this, we refer to Fig. 15. In Fig. 15a it is assumed 
that the molecule is initially in the ground state (the most common 
situation), and the scattered light has a frequency as = coo - a1 . But if 
the molecule is initially in an excited state, then the scattering process 
can cause a transition down to the ground state, as shown in Fig. 15b, 
and the transition energy will be added to the laser photon, yielding a 
scattered photon of higher frequency c o  = coo + col. For historic 
reasons the former case, in which energy is lost by the light field to the 
molecule, is referred to as Stokes Raman scattering, whereas the latter 
case is called anti-Stokes Raman scattering (hence the subscripts S 
and a). 

Since the intensity of the light scattered at frequencies cop and c o  is 
directly proportional to the number of molecules (or population) in 
the ground and excited states, respectively, the ratio of anti-Stokes to 
Stokes scattered intensities is a direct measure of the ratio of excited 
to ground state populations: 

Normally (that is, under conditions of thermal equilibrium) that 
population ratio is given by the Boltzmann distribution formula: 

- - LOS ALAMOS SCIENCE Snrine 1984 



7ig. 17. Laser Raman spectra of ACN at 100 kelvins showing 
the 1665 c m l  amide-I band and the anomalous 1650 c m l  
band for parallel and crossed polarizations. Since the two 
bands have the same ratio of parallel to crossed polarizations, 

where h a ,  is the energy difference between the excited and ground 
states, k is the Boltzmann constant, and T is absolute temperature. 

Since the soliton state is relatively stable and hence long-lived when 
compared with normal vibrational states of similar energy (those 
coupled linearly to the system), a significant excitation rate of solitons 
will result in a nonequilibrium, or nonthermal, population distribution. 
That is, the population ratio Pl/Pg will be larger than predicted by Eq. 
17. Thus one would expect to see an unusually high ratio of anti- 
Stokes to Stokes scattering intensities when the conditions for exciting 
solitons exist. Those conditions could be biochemical (for example, 
hydrolysis of ATP) or physical (direct photoabsorption into the 
soliton state). 

To excite the ACN soliton directly by photoabsorption, we would 
require a laser that emits radiation at about 1650 c m l .  That wave 
number is available from one of the higher vibrational/rotational 
transitions of (what else?!) the CO molecule. We have therefore 
constructed a tunable electrical-discharge-excited CO laser as the 
excitation source. The intent is to set up a nonequilibrium population 
ratio by directly exciting molecules into the soliton "state." We would 
then expect to see unusually high anti-Stokes intensities for lines 
corresponding to soliton-coupled resonances. 

It may also be possible to measure the lifetime of the soliton state 
directly. Here the techniques of ultra-fast time-resolved spectroscopy 
may be useful. A setup basically similar to that shown in Fig. 16 can 
be used but with very short-pulse excitation sources and fast detec- 

they have the same polarization. This result is consistent with 
identification of the 1650 c m l  band as a soliton arising from 
the self-focusing of amide-I energy. 

tors. The duration of the laser pulse and the temporal resolution of the 
detector need to be very short: between 1 and 10 picoseconds. Such 
measurements are being planned. 

Brillouin Spectroscopy. Since the propagating soliton entails a mov- 
ing density fluctuation, similar to that of a sound wave, it might be 
possible to scatter a photon, essentially elastically, off that fluctua- 
tion. The scattered photon would experience a Doppler shift cor- 
responding to the speed and direction of the soliton. Then, if all the 
molecules of a sample were lined up, as in a crystal, all the scattered 
photons would experience (plus or minus) the same shift. Since the 
soliton speed is some fraction of the speed of sound in the crystal, 
corresponding to Doppler shifts between 0.01 and 0.05 c m l  (300 
and 1500 megahertz) the same type of equipment used to detect 
Brillouin (or sound wave) scattering would be applicable. This entails 
the use of a special type of Fabry-Perot interferometer, which is really 
a high-Q resonant optical cavity whose transmission is sensitive to 
very small changes in wavelength. 

Globular Proteins 

Our aim in this research is to proceed from experiments on ACN 
through studies of synthetic a-helical proteins to natural proteins. 
Although many structural proteins, such as spectrin, tropomyosin, 
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and myosin are almost entirely a helical, there are many other 
important proteins that are globular. We have seen that the competi- 
tion between dispersion and focusing of amide-I energy leads-in a-  
helical proteins or acetanilide crystals-to the formation of a soliton- 
like object that can travel along the chain of hydrogen-bonded peptide 
groups without changing its shape. This is essentially a manifestation 
of the fact that the system has perfect translational symmetry. A 
natural question to ask is: "What is the result of the competition in 
globular proteins?" Such proteins do not have translational in- 
variance among the different peptide groups, and soliton formation is 
not to be expected. However, the mechanisms for dispersion and 
focusing of arnide-I energy are still present. 

One way to generalize Davydov's ideas to a globular protein is to 
take the full geometry of the molecule into account when calculating 
the dipole-dipole interactions. The size of the J term in the amide-I 
Hamiltonian (Eq. 1) will vary from peptide group to peptide group, 

and all possible dipole-dipole interactions have to be considered in 
order to account for dispersion of amide-I energy. A preliminary 
computer code, based on assumptions corresponding to those leading 
to Eq. 13, has been developed for arbitrary protein geometry. This 
code provides evidence of self-focusing of amide-I vibrational energy 
in acetanilide (see cover) and in globular proteins. As our physical 
experiments evolve toward biologically realistic preparations, we plan 
to make corresponding improvements in this code. 

Our present understanding of energy migration in biological 
systems is very much in its infancy. Our research efforts are directed 
toward identifying simple but important features in this context. The 
key scientific question that we have raised in this article may be 
stated: Is self-trapping of amide-I energy important for transport 
phenomena in biological materials? Experimental and theoretical 
studies on model proteins have so far led us to expect an affirmative 
answer to this question. 
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A Possible Mechanism 
for General Anesthesia 

by Scott P. Layne 

RELATED TOPICS 

T he first general anesthesia for human surgery was administered 
at the Massachusetts General Hospital in Boston in 1846. The 
patient was put to sleep by breathing diethyl ether from a glass 

vesicle, and the surgeon quickly dissected a tumor located under the 
jaw. After completing the operation the surgeon remarked to his 
audience, "Gentlemen. this is no humbug." 

Since this first successful demonstration of diethyl ether, re- 
searchers have discovered well over twenty drugs that induce general 
anesthesia. These drugs have highly diverse chemical structures and 
physical properties and, as a whole, lend little insight into their 
mechanism of action. In order to overcome this perplexity, H. Meyer 
and E. Overton (about the year 1900) originally proposed that 
anesthetic potency could be related to lipid solubility. They showed 
that stronger anesthetic agents were more oil-soluble than weaker 
ones and used this relationship to argue that anesthetics insert into the 
lipid bilayer and thereby expand its volume. More recent theories 
along this line have suggested that the expanded lipid bilayer com- 
presses intrinsic membrane proteins and thereby disturbs normal 
protein shape and function. These theories have suggested also that 
the membrane-bound anesthetic molecules "fluidizei' the lipid bilayer. 
This increased fluidity, in turn, alters the permeability of the mem- 
brane. While these popular ideas might be applicable to agents that 
are both volatile and highly lipid-soluble (oil-to-gas partition coeffi- 
cient >. 100: I), they are not particularly suitable to  a large class of 
intravenous general anesthetics that are orders of magnitude less lipid- 
soluble and are capable of forming hydrogen bonds. For the case of 
hydrogen-bonding anesthetic agents, the simplest idea is that they act 
by binding directly to  a particularly sensitive protein, which may or 
may not be located in a lipid membrane, and inhibiting its normal 
function. 

In this discussion we will focus on an important class of in- 
travenous general anesthetics that are only slightly lipid-soluble and 
are capable of forming hydrogen bonds. These agents are represented 
primarily by barbiturates. From Fig. 1 it is easy to see that a 
barbiturate contains four H-N-C=O groups in its ring. These 
H-N-C=0 groups are very similar to the peptide groups in proteins 
that are important to the propagation of solitons (see "Solitons in 
Biology"). The other drugs shown in Fig. 1 also contain H-N-C=0 
groups but to a lesser extent than barbiturates. Hydantoins contain 
three peptide groups, glutethimides and succinimides contain two, and 
urethanes contain one. These drugs are not used as general 
anesthetics per se, but they nevertheless have a similar inhibitory 
effect on the central nervous system. The potency of these six drugs 
appears to  be related directly to the number of H-N-C=O groups in 
the molecule. This is supported by the fact that N-methylated 
barbiturates (which contain two H-N-C=O groups) are shorter 
acting and less potent than nonmethylated barbiturates and that 
trimethadione (which is devoid of H-N-C=O groups) is inactive until 

Ethyl Urethane 

Glutethimides 

Trimethadione 

Succinimides 

Hydantoins Barbiturates 

Fig. 1. The six drugs shown above, all of which contain 
H-N-C=0 groups, inhibit the central nervous system. Hydan- 
toins, succinimides, and trimethadione are used primarily as 
antiepileptic agents, whereas glutethimides are used as 
sedatives. Ethyl urethane is a common veten'nary general 
anesthetic but is not used in humans because its actions are not 
smooth. The presence of an alkyl or my1 group at R and R' 
confers increasing lipid solubility, and, generally, increased 
lipid solubility promotes cm increased drug potency. 
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it is demethylated by hepatic enzymes. After demethylation, trimetha- 
dione contains two H-N-C=0 groups. 

C. Sandorfy and coworkers have shown by infrared spectroscopy 
that barbiturates are capable of dissociating hydrogen bonds in the 1- 
cyclohexyluracil/9-ethyladenine dimer. This dimer forms hydrogen Normal 
bonds of the N-H . . 0=C type that is common to proteins. They Spine 

have also shown that barbiturates form hydrogen bonds with solu- 
tions of N,N-dimethylacetamide (NNDA) and N-methylacetamide 
(NMA). In this instance the N-H groups of barbiturates act as proton 
donors, and the 0 = C  groups on NNDA and NMA act as proton 
acceptors. From these data we can infer that barbiturates are capable H 
of forming hydrogen bonds with proteins, and, for the case of a-  I 

helical proteins, this bonding might take the form shown in Fig. 2. N 
I 

Note that this type of two-point hydrogen bonding along a spine of C 

the a helix has half the chance of taking place if an N-H group in the 
1 1  
0 

barbiturate ring is replaced by an N-CH, group. 
How does the binding of an anesthetic molecule to a protein modify 

normal protein behavior? We shall answer this question using the 
soliton model as a paradigm for normal protein function. The soliton H 
model proposes that a-helical proteins effect the transport of ATP I 

hydrolysis energy through a coupling of vibrational excitations to N 
I 

displacements along the spines of the helix. This coupling leads to a C 
self-focusing of vibrational energy that has remarkably stable I I 

0 
qualities (see "What Is a Soliton?"). We suggest that the binding of an 
anesthetic molecule to a protein interferes with soliton propagation. 
We suggest further that this type of interference would be most 
important in two separate regions of a cell where soliton propagation H 
is an attractive candidate: first, in the a-helical proteins of the inner I 

N 
mitochondria1 membrane, which appear to participate in ATP I 

synthesis and electron transport, and second, in the membrane c 
I I 

proteins of neurons, which are responsible for chemical reception and 0 
signal transduction. This proposal is motivated by the fact that 
barbiturates are capable of binding to these sites and further by the 
fact that these proteins have significant a-helical character. To see 
whether this idea makes sense from a theoretical standpoint, we need 
to calculate the effect of anethestic binding on soliton propagation. 

When a barbiturate binds to an a helix. it will form new hydrogen 
bonds between anesthetic and protein molecules at the expense of the 
protein's hydrogen bond(s). This kind of anesthetic binding will result 
in either broken hydrogen bonds within the protein or in weakened 
hydrogen bonds of increased length; we shall call this increase AT?, Rg, A possible interaction of a barbiturate, via its 
We assumed for the numerical investigation that the hydrogen bonds H-N-czQ moieties, one spine ofan a-helicalprotein. me 
within the protein are merely weakened and are not completely 
broken. We chose for AJ? a value of 0.8 angstrom, which corresponds 

spiral configuration of the protein is stabilized by its weak 

roughly to a decrease in hydrogen-bond energy of 55 percent. is hydrogen bonds, and the binding v f a  barbiturate changes the 
straightforward t o  calculate the new dipole-dipole interaction energy localized structure within the helix. In this ifzszance, the 
J, if we assume that the two dipoles within the protein remain colinear. hydrogen bond is weakened and its bond length increases by 
The decrease in J will be proportional to (R+AT?)3. However, it is not the distance AR. 
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as easy to calculate a new value for the hydrogen-bond spring 
constant K nor a new value for the coupling constant y in weaker 
hydrogen bonds. As a crude estimate we assumed that K decreased 
proportionally to  hydrogen-bond energy, and thus our new spring 
constant has the value of 0.45K. We also assumed that y is slightly 
decreased in weaker hydrogen bonds to the lower value that was 
calculated by V. Kuprievich and 2. Kudritskaya. Hence, at the point 
of anesthetic binding we chose y = 0.3 x newton, which is just 
below threshold for soliton formation. 

The results of this numerical investigation are presented in Figs. 3 
and 4. The decreased values of J.  K, and y were restricted to peptide 
group numbers n = 100 to 103 on the three spines of the a helix. The 
perturbation was restricted to this narrow region because an 
anesthetic molecule is expected to weaken the hydrogen bonds in only 
a small region of the protein. This procedure also ensured that the 
soliton was well formed before entering the perturbed region. Figure 3 
can be compared directly to Fig. 10 in "Solitons in Biology." It is 
apparent that after 500 computer time units the soliton, which 
traveled through the perturbation, is appreciably degraded. Figure 4 
reveals that energy is radiated by the soliton in the form of phonons as 
it travels through the perturbation. These phonons are seen to move at  
the sound velocity in the a helix, which is approximately eight-thirds 
the soliton velocity. Up to this point we have neglected the fact that 
the H-N-C=0 groups in the barbiturate are capable of dipole-dipole 
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coupling to the H-N-C=0 groups in the helix. Such a coupling 
should further degrade soliton propagation, since the interaction 
energy between barbiturate and a helix would be appreciable. The 
dipole-dipole coupling of the anesthetic molecule to the protein will 
depend on the number of H-N-C=0 groups within it and on its 
spatial orientation relative to the protein. 

As a final consideration of this model we pose the question: How 
many proteins are inhibited during general anesthesia? Barbiturates 
exhibit their anesthetic activity at a concentration between 200 and 
1000 micromolar. At this concentration they reduce the metabolic 
activity of the brain by 10 to 15 percent, as  measured by oxygen 
utilization. Taking the average membrane protein to encompass a 
volume of 20 angstroms x 20 angstroms x 40 angstroms = 1.6 x lQ4 
cubic angstroms implies that about 1 percent of typical membrane 
proteins are associated with an anesthetic molecule. Such a small 
figure points out that the brain is very sensitive to alterations at  the 
molecular level. Consciousness appears to require the coordinated 
effort of almost every protein. 

We have presented a simplified theoretical model for anesthetic 
activity, taking advantage of the fact that the a helix is an important 
structure in membrane and cytoskeletal proteins. If the Davydov 
soliton finds experimental support in biology, then such a model may 
help to explain some of the molecular mechanisms behind general 
anesthesia. rn 

Further Reading 

R. Buchet and C. Sandorfy. "'Perturbation of the Hydrogen-Bond Equilibrium in Nucleic Bases. An 
Infrared Study." Journal of Physical Chemistry 87(1983):275-280. 

N. P. Franks and W. R. Lieb. "Molecular Mechanisms of General Anaesthesia." Nature 
300( 1982):487-493. 

M. Guerin, J.-M. Dumas, and C. Sandorfy. "Vibrational Spectroscopic Studies of Molecular Associations 
by Local Anesthetics." Canadian Journal of Chemistry 58(1980):2080-2088. 

Scott P. Layne. "The Modification of Davydov Solitons by the Extrinsic H-N-C=0 Group." Los Alamos 
National Laboratory unclassified release LA-UR-83-2253 and to be published by Plenum Press in 
Nonlinear Electrodynamics in Biological Systems. 



Solitons in Biology 

RELATED TOPICS 
- -- - - -- 

What Is a Soliton? 
by Peter S. Lomdahl 

bout thirty years ago a remarkable discovery was made 
here in Los Alamos. Enrico Fermi, John Pasta, and Stan 
Ulam were calculating the flow of energy in a one- 

dimensional lattice consisting of equal masses connected by nonlinear 
springs. They conjectured that energy initially put into a long- 
wavelength mode of the system would eventually be "thermalized," 
that is, be shared among all modes of the system. This conjecture was 
based on the expectation that the nonlinearities in the system would 
transfer energy into higher harmonic modes. Much to their surprise 
the system did not thermalize but rather exhibited energy sharing 
among the few lowest modes and long-time near recurrences of the 
initial state. 

This discovery remained largely a mystery until Norman Zabusky 
and Martin Kruskal started to investigate the system again in the 
early sixties. The fact that only the lowest order (long-wavelength) 
modes of the discrete Fermi-Pasta-Ulam lattice were "active" led 
them in a continuum approximation to the study of the nonlinear 
partial differential equation 

This equation (the KdV equation) had been derived in 1885 by 
Korteweg and de Vries to  describe long-wave propagation on shallow 
water. But until recently its properties were not well understood. 

From a detailed numerical study Zabusky and Kruskal found that 
stable pulse-like waves could exist in a system described by the KdV 
equation. A remarkable quality of these solitary waves was that they 
could collide with each other and yet preserve their shapes and speeds 
after the collision. This particle-like nature led Zabusky and Kruskal 
to name such waves solitons. The first success of the soliton concept 
was explaining the recurrence in the Fermi-Pasta-Ulam system. From 
numerical solution of the KdV equation with periodic boundary 
conditions (representing essentially a ring of coupled nonlinear 

springs), Zabusky and Kruskal made the following observations. An 
initial profile representing a long-wavelength excitation would "break 
up" into a number of solitons, which would propagate around the 
system with different speeds. The solitons would collide but preserve 
their individual shapes and speeds. At some instant all of the solitons 
would collide at the same point, and a near recurrence of the initial 
profile would occur. 

This success was exciting, of course, but the soliton concept proved 
to have even greater impact. In fact, it stimulated very important 
progress in the analytic treatment of initial-value problems for 
nonlinear partial differential equations describing wave propagation. 
During the past fifteen years a rather complete mathematical descrip- 
tion of solitons has been developed. The amount of information on 
nonlinear wave phenomena obtained through the fruitful collabora- 
tion of mathematicians and physicists using this description makes 
the soliton concept one of the most significant developments in 
modern mathematical physics. 

The nondispersive nature of the soliton solutions to the KdV 
equation arises not because the effects of dispersion are absent but 
because they are balanced by nonlinearities in the system. The 
presence of both phenomena can be appreciated by considering 
simplified versions of the KdV equation. 

Eliminating the nonlinear term u(hu /c 'x )  yields the linearized 
version 

The most elementary wave solution of this equation is the harmonic 
wave 

u(x, t )  = A exp \i(kx + wi)]  . (3)  

where k is the wave number and M is the angular frequency. In order 
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for the displacement u{x,t) given by Eq. 3 to be a solution of Eq. 2, o) 
and k must satisfy the relation 

Such a "dispersion relation" is a very handy algebraic description of a 
linear system since it contains all the characteristics of the original 
differential equation. Two important concepts connected with the 
dispersion relation are the phase velocity v = wlk and the group 
velocity v = S d 8 k .  (For the dispersion relation given by Eq. 4, 
v = k2 and v = 3k2). The phase velocity measures how fast a point 
of constant phase is moving, while the group velocity measures how 
fast the energy of the wave moves. The waves described by Eq. 2 are 
said to be dispersive because a wave with large k will have larger 
phase and group velocities than a wave with small k. Therefore, a 
wave composed of a superposition of elementary components with 
different wave numbers (different values of k in Eq. 3) will disperse, or 
change its form, as it propagates. 

Now we eliminate the dispersive term S3u/ffx3 and consider the 
equation 

This simple nonlinear equation also admits wave solutions, but they 
are now of the form u(x,t) = f [ x  - ut), where the function / is 
arbitrary. (Thatfix - ut) is a solution of Eq. 5 is easily verified by 
substitution.) For waves of this form, the important thing to note is 
that the velocity of a point of constant displacement u is equal to that 
displacement. As a result, the wave "breaks"; that is, portions of the 
wave undergoing greater displacements move faster than, and there- 
fore overtake, those undergoing smaller displacements. This multi- 
valuedness is a result of the nonlinearity and, like dispersion, leads to 
a change in form as the wave propagates. 

A remarkable property of the KdV equation is that dispersion and 
nonlinearity balance each other and allow wave solutions that 
propagate without changing form (Fig. 1). An example of such a 
solution is 

where the velocity c can take any positive value. This is the one- 
soliton solution of the KdV equation. 

Although our discussion may have provided some glimpse of the 
interplay between dispersion and nonlinearity in the KdV equation, it 
has not, of course, provided any explanation of how solitons preserve 

their shapes and speeds after collision. This particle-like property is 
more than just a mere curiosity; it is of deep mathematical 
significance. A full understanding of this property requires an ex- 
tensive mathematical discussion that we will not attempt here. We 
mention, however, that not all nonlinear partial differential equations 
have soliton solutions. Those that do are generic and belong to a class 
for which the general initial-value problem can be solved by a 
technique called the inverse scattering transform, a brilliant scheme 
developed by Kruskal and his coworkers in 1967. With this method, 
which can be viewed as a generalization of the Fourier transform to 
nonlinear equations, general solutions can be produced through a 
series of linear calculations. During the solution process it is possible 
to identify new nonlinear modes-generalized Fourier modes-that 
are the soliton components of the solution and, in addition, modes 
that are purely dispersive and therefore often called radiation. 
Equations that can be solved by the inverse scattering transform are 
said to be completely integrable. 

The manifestation of balance between dispersion and nonlinearity 
can be quite different from system to system. Other equations thus 
have soliton solutions that are distinct from the bell-shaped solitons of 
the KdV equation. An example is the so-called nonlinear Schrodinger 
(NLS) equation. This equation is generic to all conservative systems 
that are weakly nonlinear but strongly dispersive. It describes the 
slow temporal and spatial evolution of the envelope of an almost 
monochromatic wave train. We present here a heuristic derivation of 
the NLS equation that shows how it is the natural equation for the 
evolution of a carrier-wave envelope. Consider a dispersion relation 
for a harmonic wave that is amplitude dependent: 

Here E = E(x,t) is the slowly varying envelope function of a 
modulated wave with carrier frequency a and wave number k. The 
situation described by Eq. 7 occurs, for example, in nonlinear optical 
phenomena, where the dielectric constant of the medium depends on 
the intensity of the electric signal. Other examples include surface 
waves on deep water, electrostatic plasma waves, and bond-energy 
transport in proteins. 

By expanding Eq. 7 in a Taylor's series about an and ko, we obtain 
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Dispersion of Wave 

t = 0 

/Y l i t o n  
Leads to 

Nonlinear Breaking of Wave 

Fig. 1. Two effects, dispersion and breaking, cause the shape the KdV equation, these two effects balance, and the wave-a 
of a wave to change as it propagates. For a wave described by soliton-propagates without changing shape. 

We have expanded only to first order in the nonlinearity but to second 
order in the dispersion because the first-order dispersion term, as we 
shall see, only represents undistorted propagation of the wave with 
the group velocity v = [W k],. If we now substitute the operators 
i(818t) for co - coo and - i ( 8 / 8 x )  for k - ko in Eq. 8 and let the 
resulting expression operate on E, we get 

LOS ALAMOS SCIENCE S~rine 1984 



RELATED TOPICS 

This is the nonlinear Schrodinger equation, so called because of its 
resemblance to the Schrodinger equation even though its derivation 
often has nothing to do with quantum mechanics. The first term of 
Eq. 9 represents undistorted propagation of the wave at the group 
velocity, and the second and third terms represent its linear and 
nonlinear distortion. respectively. This crude derivation of the NLS 
equation shows how it arises in systems with amplitude-dependent 
dispersion relations, but more formal methods are necessary if detail 
about the coefficients, such as [r'o)/?(l Â£ 2)]o, is required. 

It is often preferable to express Eq. 9 in a neater form. For this 
purpose we transform the variables x and i into z and T. where z = x - 
1 fw /+k l0 i  is a coordinate moving with the group velocity and 
T = \/2\? 2ro/cÂ¥k2]o is the normalized time. Equation 9 then reduces 
to 

Fig. 2. Profile of a single-soliton solution of the NLS equation. 
where 

The NLS equation-like the KdV equation-is completely inte- 
grable and has soliton solutions. The analytic form for a single-soliton 
solution is given by 

where 6. q, On. and are free parameters determining the speed, 
amplitude, initial position, and initial phase, respectively, of the 
soliton. Figure 2 shows the profile of this soliton. 

Any initial excitation for the NLS equation will decompose into 
solitons and/or dispersive radiation. A monochromatic wave train 
solution E ( z , t )  = E ( i )  is thus unstable to  any z-dependent perturba- 
tion and breaks up into separate and localized solitons. This phenom- 
enon is called the Benjamin-Feir instability and is well known to any 
surfer on the beach who has noticed that every, say, seventh wave is 
the largest. The NLS equation is in a way more universal than the 
KdV equation since an almost monochromatic, small-amplitude 
solution of the KdV equation will evolve according to the NLS 
equation. 

The last type of soliton we mention. which is distinctly different 

Fig. 3. Profiles of soliton solutions of the sine-Gordon equation. 

from the KdV or NLS solitons, is one that represents topologically 
invariant quantities in a system. Such an invariant can be a domain 
wall or a dislocation in a magnetic crystal or a shift in the bond- 
alternation pattern in a polymer. The prototype of equations for such 
solitons is the sine-Gordon equation, 

8 It? -U - - -=sin u . 
8x2 cii2 (13) 

Notice that this equation allows for an infinite number of trivial 
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solutions, namely u = 0, Â 2% Â 471, . . . . Systems with a multitude 
of such "degenerate ground states" also allow solutions that connect 
two neighboring ground states. Solutions of this type are often called 
kinks, and for the sine-Gordon equation they are exact solitons; that 
is, they collide elastically without generation of dispersive radiation. 
The analytic form, whose profile is shown in Fig. 3, is given by 

where the solution u _  is often called an antikink. The parameter 
c (-1 < c < 1) determines the velocity and xn the initial position. 
Other equations with degenerate ground states also have kink and 
antikink solutions, but they are not exact solitons like those of the 
sine-Gordon equation. It is interesting to note that small-amplitude 
solutions of the sine-Gordon equation also can be shown to evolve 
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according to the NLS equation. 
Equations with soliton solutions are generic, and, although real 

systems often contain mechanisms (impurities, dissipative forces, and 
multidimensionality) that destroy exact soliton behavior, they are 
very useful as a starting point for analysis. In fact, perturbation 
methods-with the perturbation taking place around the soli- 
ton-have been developed to compute the response of the soliton to 
external forces, damping, etc. Often the result is that the parameters 
characterizing the soliton (such as  velocity and amplitude) are now 
time dependent, with the time dependence governed by simple 
ordinary differential equations. The original equations are therefore 
still very useful. Because the mechanisms that give rise to  soliton 
equations are so prevalent, the suggestion that solitons might arise in 
biology is not so surprising. The question to be asked is how well a 
particular biological system satisfies the criteria underlying the soliton 
equation. 
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